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C O N J U G A T E  P R O B L E M  O F  T H E R M A L  E X P L O S I O N  

R. Sh. Gainutdinov UDC 536.46 

The problem of thermal explosion of a reagent in the form a plane layer placed between two plane-parallel 
inert walls is solved analytically under boundary conditions of the third kind. Critical conditions for thermal 
explosion for the general case and particular cases are investigated. Results of calculations are compared 
with previously published data. An engineering method for evaluation of  the critical conditions for thermal 
explosion is proposed. 

Production of explosives is classified as an explosion-hazardous technology. Providing safe conditions for 
work in this industry is an involved problem that requires employment of theoretical and experimental methods. 
The need to provide safe conditions for explosives processing has stimulated numerous investigations of thermal 

explosion [ 1 ]. Problem of explosion safety have acquired even greater importance in recent years in connection 
with the introduction of high-energy explosives having a higher sensitivity to thermal effects compared to 
conventional explosives. In most cases, thermal explosions occur in explosives-processing apparatuses. Therefore, 
processes taking place in these cases are modeled with account for the effect of inert walls. The thermal explosion 
of a reagent placed between two inert walls has been investigated numerically in [2 ] under boundary conditions 
of the first kind. We made an attempt to solve this problem analytically under boundary conditions of the third 

kind on the outer surfaces of the inert walls. The formulation of the problem is as follows. A condensed explosive 
in the form of an infinite plate of thickness H and heat conduction coefficient 2 is placed between two inert walls 
with coefficients of heat conduction and thicknesses 21, Hi and 22, H2, respectively. Temperatures and heat fluxes 
are considered to be continuous on contact surfaces of the explosive and the walls. A zero-order chemical reaction 
whose rate is described by the Arrhenius equation takes place in the explosive. In the general formulation, the 
temperatures of the external medium and the corresponding Biot numbers have arbitrary values. The objective of 
the work was to investigate the critical conditions for thermal explosion. 

The mathematical model of the problem in dimensionless variables is as follows: 

d20/d~ 2 + ~ exp O = 0,  (1) 

dZOl/d~ 2 = 0 ,  (2) 

d 2 0 2 / ~  2 = 0 ,  (3) 

O = O  1, K 2 1 d O / d ~ = d O l / d ~  at ~ = 0 ;  (4) 

O = O 2 ,  K,~zdO/d~=dOz/d  ~ at ~ =  1; (5) 

Bi z(O 2-Oenv2 ) = - d O z / d  ~ at ~ = K  2; (6) 
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Bi I (O 1 - Oenvl ) = d O l / d  ~ at ~ = - K 1 . (7) 

Here 0 ffi E ( T -  T.)/RT~., ~ ffi x /H,  01 'ffi E(T  1 - T.)/RT~., 0 2 ffi E(T  2 - T.)/RT~., KgI ~ / ~ l ,  K, t2 ~ / ~ 2 ,  KI ffi 

HI~H,  K2 ffi H2 /H,  Bi2 - ct2H/i~2, Bil - alH//~l, Oenvl ffi E(Tenvl - T.)/RT~., and Oenv2 ffi E(Tenv2 - T.), and T, 
TI, and T2 are the temperatures of the reagent and the inert walls. 

The unwieldy system of equations (1)-(7) does not permit an explicit expression for the critical parameter 

6. However, if only critical conditions for thermal explosion are investigated, the system of equations (1)-(7) can 

be simplified by means of transformations using conjugation conditions (4) and (5). Upon doing this, we arrive at 

the following mathematical model describing the thermal explosion of a reactive layer in the case of asymmetric 

boundary conditions of the third kind: 

d2O/d~ 2 + c$ exp e = 0 ,  (8) 

Bioeff (O -- Oenvl ) = dOId~ at ~ - 0 ,  (9) 

B i l e  ff ( O  - e e n v 2  ) = --  dO/d~ at  ~ = 1 .  (IO) 

Here Bioeff = Bil/K~I (1 + KIBiD and Bileff - Bi2/K~t2(1 + K2Bi2) are effective heat exchange coefficients. The 
effect of the inert walls on the processes of thermal explosion manifests itself via these coefficients. 

The simplified system of equations (8)-(10) also does not permit obtaining the sought dependence for J. 

Therefore, we made an attempt to solve the system of equations (8)-(10) by an inverse method that is reduced to 

setting the temperature field in the form of known temperatures on outer surfaces of the plates. Let the dimensional 

values of the given temperatures be TO and Tl, and To > Tl. We take the higher temperature TO as a scale. As a 
result, we obtain the following boundary conditions: 

~ = 0 :  O = 0 ;  ~ = 1 :  O = O  1. ( l l )  

According to the inverse method, the system of equations (8) and (11) is solved first. Its solution is given in [3 ], 

where the critical parameter of thermal explosion corresponding to the given value of Ol is determined from the 

dependence 

0.5 6. = 2 (arch a .  + arch (a. exp ( -  O1))~ (12) 

The critical value a .  is determined from the condition of the maximum right-hand side of Eq. (12). The temperature 

gradients entering boundary conditions (9) and (10) are determined from the equation for the temperature field 

[ 3 ] :  exp O - a/cosh2(m~ - b). Upon substituting the values of the gradients found into (9) and (10), we obtain 

-- Bioe ff Oenvl = 2 tanh (b.) m . ,  (13) 

Bile ff (O 1 - Oenv2 ) = 2 tanh (m. - b.) m . ,  (14) 

where 

0.5 0.5 
b = l n p ;  p = a .  + ( a . -  I) ; m , = l n ( p q ) ;  

q = (a. exp ( -  01)) O's + (a. exp ( -  01) - 1) O's . (is) 

Upon solving Eq. (13) with respect to T 0, we obtain 
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Fig. 1. Critical conditions for thermal explosion obtained from the general 

solution of (8)-(10): Bi0e ff - 10 and  Bileff = 15 (1), and B l o c  ff = 1 and Bileff 
- 5 ( 2 ) .  

Fig. 2. Dependence of K = Fk/60 on the equivalent Biot number  for ~io = Bil 

- co, Tenvl " Tenv2 'ffi Tenv, and  H l .ffi H 2 = H for three particular cases: 21 - 

~2, K~tt -K~t2, and  Bioeff = Biteff = 1/K~t ( I ) ,  21 = ~ ,  K~I = 0, K ~ 2 -  2/~2,  

Bioeff = = ,  and  Bileff = I/Kit2 (2), and  ~Ii = 0, K/[ I = 0, K~I2 = ,~/22,  Bioeff = 
0% and  Bileff " I/Kg2 (3). Fk and  60 are critical parameters taken from [2] 

and  calculated by (18), respectively. 

B~ 

T O = zTenvl, z = (1 - (1 - x) ~ 2 / x ,  

x = 8 tanh (b.) m./BioeffU, U = E/RTenvl .  

(16) 

The solution of Eq. (14) allows finding the parameter  

ncalc = (1 -- (2 tanh (m.  - b.) m . / B i l e  ff - O1) z /U)  z ,  (17) 

which, being compared with n - T c n v 2 / T e n v l ,  makes it possible to monitor the correctness of the choice of the value 

of e l .  The condition required is satisfied when nca~c = n. It is assumed that  Tenvt ~ Tenv2- If the value of ncaic does 

not  coincide with the original one defined by the formulation of the problem, the iteration process is repeated. 

As a result, a safe technological mode is provided when Qko exp ( -E/RTI)EH2/2RT21 < 6. .  The  lef t -hand 

side of this inequality is the actual value of the parameter  6, which is calculated in the literature for the temperature  

of the environment.  Upon passing from TI to Tenvl using (12), we obtain the following dependence: 

Qko exp ( -  e/Rro.v0 e:/2R nv  < 60, 

6 o = 6.z  2 exp ( -  U (1 - I / z ) ) .  

(18) 

Let us consider certain results of numerical calculations obtained using Eq. (18) for the general case and  

particular cases. Results of calculations for the general case when Bil # Bi2 and  Tenvl # Tenv2 are presented in Fig. 

1 in the form 60 = f(n).  It is evident that the value of the critical parameter  increases with decreasing n and  

increasing Bi, since under  these conditions the cooling effect is enhanced. The results obtained correspond to 

published data.  From the general solution, one can obtain particular solutions considered earlier in [2 ]. 

1. Let Bil = Bi2 = ~ and  Tenvl  -- Tenv2 -- Ten v on the outer surfaces of the inert walls. In addit ion,  21 = 22 
and Hi  = / / 2  = H. As a result, we have KI = / (2  = 1 and Bioeff = B i l e f f  = l / K 2 1 .  The problem of the thermal explosion 
of the three- layer  system is reduced to that for a single-layer system under  symmetric  boundary  conditions of the 

third kind. Results  of calculations by Eq. (18) are presented in Fig. 2 along with data from [2]. The  da ta  are 
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compared by the value of K ffi t~0/Fk, where Fk is the critical parameter of thermal explosion of the problem 

considered, according to [2 ]. 

2. One of the inert walls has infinite thermal conductivity, and the other has an arbitrary value of this 

parameter. We assume that Bi! ffi B i 2  "= 0% Tenvl - Tear2 - Tear, H l = H 2 ffi H, and 2! ffi oo. Under these conditions, 

Bioeff " oo and Bileff " 1 / K ~ 2 .  Thus, we have a problem of the thermal explosion of a single-layer reagent one of 

whose surfaces is maintained at a constant temperature Tear, and convective heat transfer takes place on the other 
surface. Results of calculations are compared in Fig. 2. 

3. One of the walls is a thermal insulator. For definiteness, let 21 ffi 0. In addition, it is assumed that Bil 

- Bi2 - oo and Teav l  - Tear2 " Tear. In this case we have Bioeff - 0 and Bileff ffi 1 / K ~ 2 .  We obtain the problem of 
the thermal explosion of a single-layer reagent with the temperature gradient being equal to zero on one of the 

surfaces and convective heat transfer taking place on the other surface. In this case Hi ffi //2 '= H. Results of 

calculations are compared in Fig. 2. 

An analysis of the results of the calculations shows that upon solving one and the same problem by the two 

different methods, the values of the critical parameters differ for Bieff < 7 and coincide for Bieff > 7. The difference 

between the results of the calculations can be explained by the circumstance that different scaling temperatures 

are used in the calculations: the temperature of the environment Tear in [ 2  ] and the temperature on the reagent 

surface To in the present work. The relationship between these temperatures depends on the Bieff number. For 

small Bieff, TO and Tenv have different values (T O > Tear), and T O ~ Tea v with increasing Bieff. Therefore, when 
Bieff > 7, the results of evaluation of the critical parameter are virtually coincident, silace in the two works scaling 

temperatures with insignificantly different values are used. 

Thus, we have shown that, for relatively small values of Bi, the value of the critical parameter depends 

strongly on the choice of the scaling temperature in the vicinity of which the Frank-Kamenetskii exponential 

transformation is carried out. In the monograph [3 ] devoted to thermal explosion under asymmetric boundary 

conditions of the first kind, the choice of the highest temperature on the surface as the scaling temperature is 

recommended.  In view of this recommendation,  the use of TI as the characteristic temperature  is more 

substantiated, since TO > Tear for small Bi. The problem of the thermal explosion of a plate under symmetric 

boundary conditions Investigated for variable T. has also shown that growth of the scaling temperature leads to 

underestimation of the value of the critical parameter t~ 0. It should be noted that a change in the parameter t / f rom 

30 to 50 for Bi > 1 has virtually no effect on the value of J0. 

Evaluation of the critical value a .  from Eq. (12), which satisfies the condition d 6 / d a  - O, i s  connected with 

certain computational difficulties in engineering practice. The following approximate formulas are proposed for 

reducing the amount of engineering calculations: 

- O 1 = 340.11/exp (a) + 80.224 In  a - 1 0 9 . 9 5 / a  - 22.738a (0 -< a < 2.152), 

- 0 1  = 1 / ( 1 9 . 2 5 5 a  - 1 7 . 5 8 6 / a  - 32.339 In a - 1.6183a 2) (1.043 <_ a < 2.152), 

- -  0 1  = 1 / ( -  6.9144 exp (a) + 39.664 In a + 18.827/a) (1.0188 _< a _< 1.043), 

- 01 = 1 / ( 2 3 5 . 7 2 / e x p  (a)  + 1.0754a 2 - 87.772/a) (1.0105 _< a -< 1.0188). 

When O 1 is calculated by the approximate relationships, the relative error does not exceed 1% for a lying 

within the range of 1.0105 to 3.2760. In this case the value of -O1 lies in the range of 0-20 .  

Let us consider an algorithm for evaluation of the critical conditions for thermal explosion in engineering 

calculations. Let the thermophysical parameters of the reagent and the inert walls, the kinetic parameters of the 

reagent, and the boundary conditions on the outer surfaces of the walls be known. Given the values of Bi0eff, Bi]eff, 

and n ffi T e n v 2 / T e n v l ,  from (17) values of a and Ol that satisfy the condition ncalc -= rt are found based on the 
approximating functions by the trial-and-error method. Then the critical parameter 60 is calculated by (18), and 
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the values of b, m, and z entering the formulas for the calculations are evaluated by Eqs. (14), (15), and (16). The 
relative error of evaluation of 6o by the engineering method does not exceed 1%. 

N O T A T I O N  

O, e l ,  and 02, dimensionless temperatures of the chemical substance and the inert walls, respectively; 60 
- Qko exp (--E/RT.)EH2/~RT~., Frank-Kamenetskii parameter; x and  ~, dimensional and dimensionless 
coordinates; Q, thermal effect of the reaction; ko, preexponential factor; E, activation energy; R, gas constant; 
T., scaling temperature; TO and TI, temperatures of the hot and cold reagent surfaces; a 2 and a l ,  heat transfer 
coeffidents; Tcnvl and Tenv2 , temperatures of the environment; Bi2 and Bil, Biot numbers; Oenvl and Oenv2, 
dimensionless temperatures of the environment. 
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